CS473-Pattern Recognition Tutorial 4

TAs:

- Emmanouil Sylligardos, sylligardos@csd.uoc.gr
- Despina - Ekaterini Argiropoulos, despargy@csd.uoc.gr

Instructor:

- Prof. Panos Trahanias, trahania@csd.uoc.gr

Table of contents

1. Dataset
2. Linear classifier
3. Training algorithm
4. Plotting
5. The tqdm library

The dataset \& the linear classifier

Question

2 breeds of dogs:

- Blue: tall legs \& short body
- Orange: short legs \& long body

Question

Definition

The dataset is linearly separable
Linearly separable =: a dataset is said to be linearly separable if it is possible to draw a straight line (or a hyperplane in higher dimensions) that separates the different classes in the dataset

Definition

The dataset is linearly separable
Linearly separable =: a dataset is said to be linearly separable if it is possible to draw a straight line (or a hyperplane in higher dimensions) that separates the different classes in the dataset
$y=m^{*} x+b$

Height

Length

We need a formalized way to find:

$$
y=m^{*} x+b \Longleftrightarrow y=x+1
$$

Problem

Can we name some features of this line wrt the data?

Problem

Can we name some features of this line wrt the data?

All points of class 'Blue' are on top of the line, while all points of class 'Orange' are under the line.

Let's formalize!
$y=m^{*} x+b$

Solution

$$
\begin{aligned}
& A x+B y+C=0 \Leftrightarrow \\
& -B y=A x+C \Leftrightarrow \\
& y=A x+C /-B \Leftrightarrow \\
& y=(-A / B)^{*} x+(-C / B) \Leftrightarrow \\
& y=m x+b
\end{aligned}
$$

Absolute distance

$\mathrm{d}=\frac{\left|A x_{0}+B y_{0}+C\right|}{\sqrt{A^{2}+B^{2}}}$

$$
\begin{aligned}
& A x+B y+C=0 \Leftrightarrow \\
& -B y=A x+C \Leftrightarrow \\
& y=A x+C /-B \Leftrightarrow \\
& y=(-A / B)^{*} x+(-C / B) \Leftrightarrow \\
& y=m x+b
\end{aligned}
$$

Signed distance

$\mathrm{d}=\frac{A x_{0}+B y_{0}+C}{\sqrt{A^{2}+B^{2}}}$

$$
\begin{aligned}
& A x+B y+C=0 \Leftrightarrow \\
& -B y=A x+C \Leftrightarrow \\
& y=A x+C /-B \Leftrightarrow \\
& y=(-A / B)^{*} x+(-C / B) \Leftrightarrow \\
& y=m x+b
\end{aligned}
$$

$$
\begin{aligned}
& A x+B y+c=0 \\
& g(x)=A x+B y+c \\
& g(x)=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}+w_{0} \text { (n dimensions) } \\
& g(x)=w^{\top *} x+w_{0} \\
& g(x)=a^{\top *} y \quad \text { (bias trick) }
\end{aligned}
$$

$$
\begin{aligned}
& A x+B y+c=0 \\
& g(x)=A x+B y+c
\end{aligned}
$$

Model

$g(x)$ is proportional to the signed distance!

$g(x)=w_{1} x_{1}+w_{2} x_{2}+\ldots+w_{n} x_{n}+w_{0} w(n d i m e n s i o n s)$

$$
\begin{aligned}
& g(x)=w^{\boldsymbol{\top} *} x+w_{0} \\
& g(x)=a^{\boldsymbol{T} *} y \quad \text { (bias trick) }
\end{aligned}
$$

$A x+B y+c=0$
$g(x)=A x+B y+c$

Extras

https://github.com/boniolp/MSAD
https://pytorch.org/docs/stable/generate d/torch.nn.functional.linear.html
$\mathrm{g}(\mathrm{x})=\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\ldots+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}+\mathrm{w}_{\mathrm{o}} \mathrm{w}$ (n dimensions)
$g(x)=w^{\top *} x+w_{0}$
$\mathrm{g}(\mathrm{x})=\mathrm{a}^{\boldsymbol{T} *} \mathrm{y} \quad$ (bias trick)

The training algorithm

We need a formalized way to:

$$
y=m^{*} x+b \Longleftrightarrow y=x+1
$$

The question remains

$$
y=x+1
$$

We need something to minimize
Try \#1:
\rightarrow The number of misclassified samples

Is it a good option?

\rightarrow Good: It makes sense to minimize the number of misclassified samples

Criterion

\rightarrow Bad: The function is non-continuous thus non-differentiable

We need something to minimize
Try \#2:
\rightarrow The distance of misclassified samples from the classifier

Is it a good option?

\rightarrow Good: It makes sense to minimize the distance of misclassified samples

Criterion

$J_{p}(\mathbf{a})=\sum_{\mathbf{y} \in \boldsymbol{q}}\left(-\mathbf{a}^{\prime} \mathbf{y}\right)$

Criterion (visualization)

$$
J_{p}(\mathbf{a})=\sum_{\mathbf{y} \in \mathcal{Z}}\left(-\mathbf{a}^{t} \mathbf{y}\right)
$$

What's the derivative:

\rightarrow The derivative is -y (look notes)

Criterion

$J_{p}(\mathbf{a})=\sum_{\mathbf{y} \in \mathfrak{q}}\left(-\mathbf{a}^{t} \mathbf{y}\right)$

What's the derivative:
\rightarrow The derivative is -y (look notes)

Gradient descent

Question:
Why do we need the derivative :/

What's the derivative:
\rightarrow The derivative is -y (look notes)

Gradient descent

Why do we need the derivative :/

Gradient descent

What you will implement

Fixed Increment Single-Sample Perceptron

Algorithm 4 (Fixed-increment single-sample Perceptron)
${ }^{1}$ begin initialize a, $k=0$
$2 \quad$ do $k \leftarrow(k+1) \bmod n$
$3 \quad$ if \mathbf{y}_{k} is misclassified by a then $\mathbf{a} \leftarrow \mathbf{a}-\mathbf{y}_{k}$
4 until all patterns properly classified
5 return a
6 end

Fixed/Variable Increment Batch Perceptron

Algorithm 3 (Batch Perceptron)
1 begin initialize a, $\eta(\cdot)$, criterion $\theta, k=0$
2 do $k \leftarrow k+1$
$3 \quad \mathbf{a} \leftarrow \mathbf{a}+\eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_{k}} \mathbf{y}$
$4 \quad$ until $\eta(k) \sum_{\mathbf{y} \in \mathcal{Y}_{k}} \mathbf{y}<\theta$
5 return a
${ }^{6}$ end

Scheduler

TQDM lib

```
* from tqdm.auto import tqdm
from time import sleep
loop = tqdm(
    range(10000),
    desc="Example",
)
animals = ["cat", "cow", "dog"]
animals counter = 0
for i in loop:
    sleep(0.01)
    if i % 100:
        loop.set_postfix(animal=animals[animals_counter % len(animals)])
        animals_counter += 1
```

Any questions?
hy473-list@csd.uoc.gr
sylligardos@csd.uoc.gr despargy@csd.uoc.gr

